Modified Estimators of the Expected Shortfall

Author:

Jadhav Deepak1,Ramanathan T.V.2,Naik-Nimbalkar U.V.3

Affiliation:

1. Deepak Jadhav is at the Department of Statistics, University of Pune, Maharashtra, India.

2. T.V. Ramanathan is at the Department of Statistics, University of Pune, Maharashtra, India.

3. U.V. Naik-Nimbalkar is at the Department of Statistics, University of Pune, Maharashtra, India.

Abstract

The coherent risk measure Expected Shortfall is popularly considered as an alternative to Value-at-Risk. We briefly review all existing parametric and non-parametric methods to estimate Expected Shortfall. The historical method is considered as the best method of estimation for the Expected Shortfall, though it has a serious disadvantage of over-estimation in the presence of outliers in the return data. In this article, we propose two non-parametric estimators of Expected Shortfall which are robust to outliers. We estimate the Expected Shortfall corresponding to daily returns of some of the selected assets and indices of the Indian (BSE and NSE) and foreign stock markets (NYSE and LSE). The backtesting procedure boasts in confirming that the proposed non-parametric estimators are the best alternatives to the historical method in avoiding over-estimation of Expected Shortfall.

Publisher

SAGE Publications

Subject

Economics and Econometrics,Finance

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3