Using field data–based large eddy simulation to understand role of atmospheric stability on energy production of wind turbines

Author:

Nielson Jordan1ORCID,Bhaganagar Kiran1

Affiliation:

1. Laboratory of Turbulence, Sensing and Intelligence Systems, Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, TX, USA

Abstract

A novel and a robust high-fidelity numerical methodology has been developed to realistically estimate the net energy production of full-scale horizontal axis wind turbines in a convective atmospheric boundary layer, for both isolated and multiple wind turbine arrays by accounting for the wake effects between them. Large eddy simulation has been used to understand the role of atmospheric stability in net energy production (annual energy production) of full-scale horizontal axis wind turbines placed in the convective atmospheric boundary layer. The simulations are performed during the convective conditions corresponding to the National Renewable Energy Laboratory field campaign of July 2015. A mathematical framework was developed to incorporate the field-based measurements as boundary conditions for the large eddy simulation by averaging the surface flux over multiple diurnal cycles. The objective of the study is to quantify the role of surface flux in the calculation of energy production for an isolated, two and three wind turbine configuration. The study compares the mean value, +1 standard deviation, and −1 standard deviation from the measured surface flux to demonstrate the role of surface heat flux. The uniqueness of the study is that power deficits from large eddy simulation were used to determine wake losses and obtain a net energy production that accounts for the wake losses. The frequency of stability events, from field measurements, is input into the calculation of an ensemble energy production prediction with wake losses for different wind turbine arrays. The increased surface heat flux increases the atmospheric turbulence into the wind turbines. Higher turbulence results in faster wake recovery by a factor of two. The faster wake recovery rates result in lowering the power deficits from 46% to 28% for the two-turbine array. The difference in net energy production between the +1 and −1 standard deviation (with respect to surface heat flux) simulations was 10% for the two-turbine array and 8% for the three-turbine array. An ensemble net energy production by accounting for the wake losses indicated the overestimation of annual energy production from current practices could be corrected by accounting for variation of surface flux from the mean value.

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3