Affiliation:
1. Electrical Power and Control Engineering, Adama Science and Technology University, Adama, Ethiopia
Abstract
The wind, stochastic in nature, is one of the fastest-growing and most promising renewable energy resources in the entire world. Thus, this paper investigates the influence of parameter uncertainties upon a dynamic performance of a grid-tied Doubly-Fed Induction Generator (DFIG)-based Wind Energy Conversion System (WECS). The main uncertain parameters found in the study are mutual and rotor winding reactances which occurred due to the variation of the angular positions of the rotor caused by varying wind speeds. The variation in the wind speed caused the generator rotor speed to deviate between 25% and 150%. Consequently, the rotor winding reactance of DFIG changes from its nominal value of 1.31 mΩ to between 0.983 and −0.655 mΩ; and the mutual reactance from its nominal value of 0.941 Ω to between 0.758 and −0.4708 Ω. As a result, the stator and rotor winding voltages and currents of the DFIG are uncertain.
Subject
Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献