A novel method for condition monitoring of wind turbine gearbox in wind farm

Author:

Xin Hongwei1,Wen Xiaoqiang1ORCID,Xu Ziang1,Wang Jianguo1

Affiliation:

1. Department of Automation, Northeast Electric Power University, Jilin, P.R. China

Abstract

In this paper, the gearbox of wind turbine in a wind farm is taken as research object, and its operation condition monitoring model is established by using multivariable long-short term memory networks (LSTM). Firstly, parameters with high correlation are obtained by using maximum information coefficient (MIC) as the input vectors of monitoring model. Then, the oil temperature prediction model of gearbox is constructed based on LSTM network. The residual between actual value and predicted value of gearbox oil temperature is obtained. After that, a gearbox condition monitoring model is established by using residual sequence, exponential weighted moving average (EWMA), and kernel density estimation algorithm. The case analysis shows that the proposed method can carry out fault early warning about 15.7 hours in advance. Compared with univariate LSTM condition monitoring model and SVR condition monitoring model, it can find faults more timely and can be applied to fault early warning of wind turbines in wind farm.

Funder

the science and technology projects by Jilin province department of education

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3