Forecasting residential building costs in New Zealand using a univariate approach

Author:

Zhao Linlin1ORCID,Mbachu Jasper2,Zhang Huirong1

Affiliation:

1. College of Architecture and Civil Engineering, Beijing University of Technology, Beijing, China

2. Faculty of Society & Design, Bond University, Gold Coast, Queensland, Australia

Abstract

Construction cost index has been widely used to prepare cost estimates, budgets, and bids for construction projects. It can also be regarded as an indicator of cost level, which makes it valuable to public authorities for understanding the conditions in the construction industry. Accurate forecasting of future construction cost index is essential for construction industry at both micro- and macro-level. To improve the accuracy of the cost forecasting, time series modeling techniques are adopted in this study. The performance of the exponential smoothing models and seasonal autoregressive integrated moving average (ARIMA) models for forecasting the building cost of five categories of residential building (one-story house, two-story house, town house, apartment, and retirement village building) in New Zealand is compared. Exponential smoothing models can produce more accurate forecasts for cost series of the one-story house and two-story house in New Zealand, while seasonal ARIMA models outperform exponential smoothing models across the cost series for town house, apartment, and retirement village building. This study contributes toward the development of the current state of knowledge in the area of cost index forecasting for New Zealand and provides insights that should be valuable from the practitioner perspectives.

Funder

Massey University

Publisher

SAGE Publications

Subject

Management Science and Operations Research,Organizational Behavior and Human Resource Management

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3