Finite element modeling and validation of the fastening systems and concrete sleepers used in North America

Author:

Chen Zhe1,Shin Moochul2,Wei Sihang1,Andrawes Bassem1,Kuchma Daniel A1

Affiliation:

1. Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, USA

2. Department of Civil and Environmental Engineering, Western New England University, USA

Abstract

Significant increases in rail loads, as well as growing interest in providing higher-speed passenger rail services, is placing new and increasing existing demands on fastening systems and concrete sleepers. Consequently, there is a strong need to better understand the response of fastening systems and concrete sleepers to these significantly increased demands. This paper presents an experimentally validated three-dimensional (3D) finite element (FE) model of a fastening system and concrete sleeper that can be used to study and improve the design and performance of these systems. In this 3D FE model, the following mechanisms that are critical to the performance of fastening systems and concrete sleepers are included: frictional interaction between components of the fastening system; interaction between shoulders and concrete; and the plastic behavior of each component in the system. The FE model is validated using laboratory experimental tests, in which a lateral load is applied to a single concrete sleeper with two sets of fastening systems. The validated FE model is used to analyze the sleeper/fastening system under different loading scenarios involving various vertical and lateral load combinations. Both component stress and system deflection of the model are analyzed to investigate the system performance at the component and system levels. The results of the study show that FE modeling can be used to investigate the complex behavior of fastening systems and concrete sleepers.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3