Coupled finite element and multibody system dynamics modeling of a three-dimensional railroad system

Author:

El-Ghandour Ahmed I1,Hamper Martin B1,Foster Craig D1

Affiliation:

1. University of Illinois at Chicago, Chicago, USA

Abstract

During the last two centuries, railroad vehicles have been an important means of transportation of both people and cargo, due to their economic and comfort advantages. Railroad vehicles are a highly economical means of transporting large quantities of cargo over long distances, and also provide a safe and comfortable means of passenger transport. Over the last 30 years or so, the finite element method (FEM) has become more widely used to model railroad systems including the rails, sleepers and substructure. Multibody system dynamics (MBS) software programs are used to model the contact between the wheels and the rails in an effort to study the contact forces and the general dynamics of railroad vehicles. Coupling both the FEM and MBS is a very useful technique to build a reliable model that includes the advantages of both methods. In this work, a full three-dimensional finite element model is created that uses beam, solid and spring elements to model the rails, fasteners, sleepers and substructure. The model treats the rails and the substructure as deformable bodies. Mode shapes of the finite element model are extracted for use in a MBS code to analyze the deformation of the track and substructure under dynamic loading conditions. The results of this new model agree well with results published in the literature.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A finite element methodology to model flexible tracks with arbitrary geometry for railway dynamics applications;Computers & Structures;2021-10

2. Coupled Multibody and Finite Element Modelling of Track Settlement;Challenges and Innovations in Geomechanics;2021

3. Random vibration analysis of tram-track interaction on a curve due to the polygonal wheel and track irregularity;Vehicle System Dynamics;2020-12-01

4. A novel methodology to automatically include general track flexibility in railway vehicle dynamic analyses;Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit;2020-07-28

5. Coupled finite element and multibody systems dynamics modelling for the investigation of the bridge approach problem;Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit;2019-02-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3