Identification of the under-tie pad material characteristics for stress state reduction

Author:

Branson Jacob M12ORCID,Dersch Marcus S2,Lima Arthur de Oliveira2ORCID,Edwards J Riley2ORCID,Cesar Bastos Josue2

Affiliation:

1. Rail Transportation and Engineering Center – RailTEC, CEE University of Illinois at Urbana-Champaign, Urbana, IL, USA

2. Department of Civil and Environmental Engineering – CEE University of Illinois at Urbana-Champaign –Civil Engineering Laboratory, Urbana, IL, USA

Abstract

The degradation of ballast particles and concrete crossties in heavy-haul railroad tracks poses problems such as inhibiting proper drainage and disturbing track geometry. under-tie pads offer a solution to reduce crosstie–ballast stresses by improving load distribution through the track structure and reducing pressures on ballast particles and the crosstie surface. Despite the emergence of under-tie pads on heavy-haul corridors, optimal characteristics for the reduction of the tie–ballast stress state have not been defined in literature. In this research, several under-tie pad products and generic materials with various thicknesses and hardnesses were studied to identify appropriate properties of under-tie pad products for pressure distribution. The findings from this research provide an insight into how material characteristics influence the pressure mitigation performance of under-tie pads. Results from this study indicate that thickness is the most crucial metric determining under-tie pad performance in reducing ballast degradation; hardness and material type also have an effect, but to a lesser degree.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Reference19 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3