Dynamic response of a curved railway track subjected to harmonic loads based on the periodic structure theory

Author:

Liu Weifeng1,Du Linlin1,Liu Weining1,Thompson David J2

Affiliation:

1. School of Civil Engineering, Beijing Jiaotong University, Beijing, China

2. Institute of Sound and Vibration Research, University of Southampton, Southampton, UK

Abstract

In this study, the authors have analysed the dynamic response of a curved railway track that is subjected to moving and non-moving harmonic loads. The track is considered as a curved Timoshenko beam supported by periodically spaced discrete fasteners. The displacement and rotation of the curved rail are expressed as the superposition of track modes in the frequency domain. Periodic structure theory is applied to the equations of motion of the curved track, allowing the dynamic response of the track to be calculated efficiently in a reference cell. The effect of the stiffness and damping of the fasteners, the fastener spacing and the radius of curvature on the mobility and decay rate of the track are analysed for non-moving loads on the rail head. The vibration of the rail due to moving loads is also discussed. It is found that the dynamic response of a curved rail with a large radius has the same characteristics as that of a straight track. However, the dynamic response of the track is significantly affected when the radius of curvature becomes small. The radius affects the mobility; it also has an effect on the track decay rate below 2000 Hz and the velocity of the rail in the vertical direction when the radius is smaller than about 15 m and for the lateral direction when it is less than about 30 m. Moreover, the curvature has a significant influence on the vertical/lateral cross mobility, the magnitude of which increases as the radius is reduced. When the radius is larger than 10 m, the amplitude of the lateral vibration under a moving vertical load and the vertical response to a moving lateral load are inversely proportional to the radius.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3