Context-driven decisions for railway maintenance

Author:

Villarejo Roberto1,Johansson Carl-Anders1,Galar Diego1,Sandborn Peter2,Kumar Uday1

Affiliation:

1. Division of Operation, Maintenance and Acoustics, Luleå University of Technology, Sweden

2. Department of Mechanical Engineering, University of Maryland, USA

Abstract

Railway assets suffer wear and tear during operation. Prognostics can be used to assess the current health of a system and predict its remaining life, based on features that capture the gradual degradation of its operational capabilities. Prognostics are critical to improve safety, plan successful work, schedule maintenance, and reduce maintenance costs and down time. Prognosis is a relatively new area; however, it has become an important part of condition-based maintenance of systems. As there are many prognostic techniques, usage must be tuned to particular applications. Broadly stated, prognostic methods are either data driven, or rule or model based. Each approach has advantages and disadvantages, depending on the hierarchical level of the analysed item; consequently, they are often combined in hybrid applications. A hybrid model can combine some or all model types; thus, more-complete information can be gathered, leading to more-accurate recognition of the impending fault state. However, the amount of information collected from disparate data sources is increasing exponentially and has different natures and granularity; therefore, there is a real need for context engines to establish meaningful data links for further exploration. This approach is especially relevant in railway systems where the maintainer and operator know some of the failure mechanisms, but the sheer complexity of the infrastructure and rolling stock precludes the development of a complete model-based approach. Hybrid models are extremely useful for accurately estimating the remaining useful life (RUL) of railway systems. This paper addresses the process of data aggregation into a contextual awareness hybrid model to obtain RUL values within logical confidence intervals so that the life cycle of railway assets can be managed and optimized.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3