Numerical investigation of the fatigue performance of elastic rail clips considering rail corrugation and dynamic axle load

Author:

Wang Ping12,Lu Jun12ORCID,Zhao Caiyou12,Chen Mingming12,Xing Mengting12

Affiliation:

1. School of Civil Engineering, Southwest Jiaotong University, Chengdu, China

2. Key Laboratory of High-speed Railway Engineering, Ministry of Education, Chengdu, China

Abstract

To analyze the reasons for rail clip fracture, the characteristics of rail corrugation were first measured using a rail corrugation meter. The vibration acceleration of the fastener clips at the sections with/without rail corrugation was measured, and the effects of rail corrugation on the clip vibration were analyzed. After this, a vehicle--track coupling dynamic model and a refined model for the fastener system were established in order to study the effects of rail corrugation on the vibration acceleration and stress on critical points. Finally, the rail grinding limits were determined based on the fatigue analysis method and the damage accumulation theory from the aspect of the fatigue life of the clip. The results of the study showed that the main wavelength of rail corrugation at the rail clip fracture section was approximately 40 mm. The vibration acceleration of the clip caused by rail corrugation was too large. Under normal installation conditions, the maximum clip stress was 1490 MPa at the small circular arc on the rear arch, which was identical to the on-site fracture location. The intrinsic frequency of the clip was approximately 810 Hz. Rail corrugation excited and triggered the forced vibration of the clip, and induced resonance at a speed of 120 km/h and a wavelength of 40 mm. The large cyclic stress amplitude of the clip with rail corrugation increased from 44 MPa to 68 MPa when compared with the clip without rail corrugation. Rail clip fracture was caused by the naturally occurring resonance fatigue arising from rail corrugation. For metro lines designed with a maximum speed of 120 km/h, it was suggested to control the rail corrugation amplitudes with a wavelength of 40 mm, 50 mm, 30 mm, 120 mm and 160 mm to below 0.04, 0.08, 0.16, 0.19 and 0.2 mm, respectively, taking into account the fatigue life of the clip.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3