Affiliation:
1. State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, China
2. China Railway Eryuan Engineering Group Co. Ltd, Chengdu, China
3. Key Laboratory of High-speed Railway Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu, China
Abstract
A new approach has been developed to determine the dynamic amplification factors of railways. This approach employs a traditional multi-body dynamic model of vehicle–track interaction and a 3D explicit finite element model of wheel–rail rolling contact to treat the low- and high-frequency dynamics, respectively. Excitations are considered by contact surface unevenness and more specifically, by the power spectrum density of track irregularity for the low-frequency analysis and by the critical wheel flat, weld, and rail corrugation for the high frequency. For the 40-tonne axle load heavy haul railway simulated in this work, it has been found that the optimum fastening stiffness should be 150–200 MN/m; the dynamic amplification factors of the wheel–rail contact, fastening, and ballast forces are 1.94, 2.0, and 1.67, respectively, if the fastening stiffness of 200 MN/m is applied. Finally, new dynamic amplification factor formulae that include key parameters such as the fastening stiffness, speed, and axle load are proposed for the heavy haul railway design.
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献