Effects of flange wear on dynamic vehicle-turnout interaction

Author:

Hao Chaojiang12,Chen Jiayin12,Sun Xu12ORCID,Xu Fei23,Xu Jingmang12ORCID,Wang Ping12

Affiliation:

1. Key Laboratory of High-Speed Railway Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu, China

2. School of Civil Engineering, Southwest Jiaotong University, Chengdu, China

3. Structural Health Monitoring and Control Institute, Shijiazhuang Tiedao University, China

Abstract

Long-term investigations have revealed incidences of severe flange wheel wear in the field. Slight changes in the profile shape will lead to changes in the geometric relationship between wheel and rail, hence affecting the dynamic wheel-rail interaction. The turnout is an essential piece of track equipment for carrying out train transfer or cross line operation. In turnouts, the rail profile changes throughout the structure, and the wheel load transfers from one rail component to the next, resulting in a complex wheel/rail relationship. This paper investigates the effect of flange wear on the wheel-rail interaction as the vehicle switches into the turnout track in a diverging movement. A coupling model for a high-speed flexible turnout and a multi-rigid vehicle is established, and the dynamic contact trajectories between wheel and rail, the vibration energy of the rail, the lateral wheel-rail force, rail wear, and car body driving stability are analyzed. The results show that the wheel transition position is shifted backward due to the flange wear, and a less sharp impact occurs with a worn flange profile during wheel load transition in the switch panel, which improves lateral wheel-turnout interaction and the rail wear. Worn flange profiles give a large flangeway clearance, which is not conducive to the smooth operation of vehicles in the diverging route of turnouts.

Funder

Young Talent Top Project of Hebei Province

China Postdoctoral Science Foundation

Science and Technology research Project of Beijing-Shanghai High-speed Railway Co., LTD

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Impact of debonding between layers of ballastless turnouts on the vibration characteristics of the wheel-rail system;Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit;2024-01-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3