Fatigue analysis of coil springs in the primary suspension of a railway vehicle based on synthetic spectrum for time-varying vibration load

Author:

Wang Tengfei1ORCID,Zhou Jinsong1,Sun Wenjing1,Thompson David2ORCID,Zhang Zhanfei1ORCID,Wang Qiushi1

Affiliation:

1. Institute of Rail Transit,Tongji University, Shanghai, China

2. Institute of Sound and Vibration Research, University of Southampton, Southampton, UK

Abstract

The fatigue life of coil springs is usually predicted with a stationary Gaussian vibration load and deterministic structural parameters. However, the obtained fatigue life is inconsistent with the observed fatigue life of fractured springs which varies within a wide range. The work aims to propose a method to predict the fatigue life of the coil spring by considering the time-varying vibration load, i.e., root mean square (rms) varies with time and the uncertainties of geometric parameters. First, a synthetic method for time-varying vibration loads is proposed. The time-varying load is decomposed into multiple stationary Gaussian short samples represented by their power spectral density (PSD). These PSDs are synthesized according to the distribution characteristics of spectral values, in which data that are non-Gaussian are processed with the Johnson system. Second, the influence of parameter uncertainties in the coil spring is studied by a Monte Carlo analysis of the stress frequency response function. Finally, the fatigue life is calculated and compared with the results predicted by using the measured stress. The results show that the synthetic spectrum has almost the same damage potential as the measured time-varying load. In comparison with results predicted from the measured stress, the synthetic spectrum gives much better estimates of the fatigue life of the coil spring than the average spectrum. Parameter uncertainties of coil springs significantly affect fatigue life and should be taken into account.

Funder

Shanghai Sailing Program

Natural Science Foundation of Shanghai

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3