Impact of debonding between layers of ballastless turnouts on the vibration characteristics of the wheel-rail system

Author:

Li Shuxiao12ORCID,Li Zhiheng12,Yan Zheng12,Wang Ping12,Xu Jingmang12ORCID

Affiliation:

1. Key Laboratory of High-Speed Railway Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu, China

2. School of Civil Engineering, Southwest Jiaotong University, Chengdu, China

Abstract

The mortar layer of the slab ballastless turnout is the weakest connecting part compared to the rest of the structure, meaning debonding between the turnout slab and the mortar layer is prone to occur under the dynamic load of a train. In order to study the impact of debonding on the vibration response of the wheel-rail system in the turnout area, a rigid-flexible vehicle-turnout coupled dynamic model that takes debonding into account was established based on the theory of vehicle-track coupled dynamics; the flexible deformation of the multi-rail and turnout slab was also included in the model. The impact of debonding on the wheel load transition and the vibration acceleration of the turnout structure and axle box were then analysed. The results show that: There are significant differences in the impact of different types of debonding on the vibration response of the vehicle-track coupled system. When the debonding height is less than the voiding limit, the impact of the debonding height is significant, while the vibration acceleration of the vehicle-turnout system remains basically unchanged once debonding height reaches the void limit.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3