Controlling bridge vibrations using a viscoelastic waveguide absorber

Author:

Zhao Caiyou12,Wang Ping12

Affiliation:

1. Key Laboratory of High-Speed Railway Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu, China

2. School of Civil Engineering, Southwest Jiaotong University, Chengdu, China

Abstract

The study aims to mitigate the impact of structure-borne noise from existing elevated railway bridges on residents living along the line. In the study, a viscoelastic waveguide absorber mounted on a track slab was proposed based on waveguide vibration absorption techniques by proceeding from the vibration transmitting path and using the track slab as the carrier. First, a dynamic model for the slab-mounted viscoelastic waveguide absorber was constructed, in which a vibration equation was derived and an energy consumption mechanism was obtained. Then, a Chinese railway track style II (CRTS II) ballastless track slab most widely used in Chinese elevated railways was modelled as the primary vibration system, on which an experimental modal analysis was performed. Additionally, a parameterized analysis was performed on the dynamic performance of the slab-mounted viscoelastic waveguide absorber based on the vibration absorption and energy consumption mechanism of the absorber to determine the optimum parameter configuration for the dissipater. Furthermore, the most suitable installation positions for the energy waveguide links were defined using a response surface method. Finally, a bridge vibration response control effectiveness under train loads was also investigated, and it indicated that the waveguide absorbers had a favourable effect in reducing the vibration and structure-borne noise from the elevated railway bridge.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3