Dutch research results on wheel/rail interface management: 2001–2013 and beyond

Author:

Zoeteman Arjen12,Dollevoet Rolf2,Li Zili2

Affiliation:

1. ProRail Utrecht, The Netherlands

2. Section of Road and Railway Engineering, Delft University of Technology, The Netherlands

Abstract

This paper discusses the state-of-the-art procedures obtained in the research projects performed by Delft University of Technology and ProRail, together with other partners and experts, such as Netherlands Railways, to optimize the wheel/rail interface on the Dutch rail system. The wheel/rail interface has been the focus of a significant number of research projects and improvement measures in the Netherlands over the last 10 years. ProRail’s rails are subjected today to a ‘stress regime’, with high friction and loads from their operation, certainly since the introduction of new rolling stock and new rail types. This has resulted in cracks and premature loss of rail life due to rolling contact fatigue (RCF), particularly in curves and turnouts. Once damage occurs, it accelerates the degradation of track. This can be avoided by grinding that introduces artificial wear and moving more towards a ‘wear regime’, where initial cracks do not ‘survive’ and do not have the possibility to initiate and grow to form deep defects. Following this philosophy, a preventive gradual grinding strategy has been implemented to remove developing fatigue damage. Also, resistance to stress and avoidance of stress on the rails have been identified as possible strategies. This has led to various developments. A new ‘anti-head check’ rail profile (54E5) and use of new rail steels have led to reduced contact stresses and RCF initiation. Wheel/rail interface conditioning is being introduced to reduce noise and contact stress using on-train applicators. Wheel profiles have been optimized based on the new 54E5 profile and ongoing research focuses more and more on a holistic approach to wheel, rail and bogie design. This paper presents key projects and outcomes of the RCF research programme.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Reference16 articles.

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rail wear rate on the Belgian railway network – a big-data analysis;International Journal of Rail Transportation;2023-09-30

2. Long freight trains & long-term rail surface damage – a systems perspective;Vehicle System Dynamics;2022-06-13

3. Wheel-rail dynamic interaction;Rail Infrastructure Resilience;2022

4. Guidelines for rail reprofiling;Transportation Research Procedia;2022

5. Smart Diagnosis And Maintenance Systems For Railway Tracks;Akıllı Ulaşım Sistemleri ve Uygulamaları Dergisi;2021-09-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3