Strength reduction method for a factor of safety determination of damaged concrete structures

Author:

Rakić Dragan1ORCID,Dunić Vladimir1ORCID,Živković Miroslav1,Radovanović Slobodan2,Divac Dejan2,Šumarac Dragoslav3

Affiliation:

1. University of Kragujevac, Faculty of Engineering, Kragujevac, Serbia

2. Jaroslav Černi Water Institute, Belgrade, Serbia

3. State University of Novi Pazar, Department of Technical Sciences, Novi Pazar, Serbia

Abstract

The paper presents the procedure for determining the factor of safety (FoS) using the strength reduction method (SRM) for the case of a concrete damage plasticity constitutive model. The SRM was originally used in a slope stability analysis and in its original form, this method was applied by reducing the shear strength of the material. Since damage in concrete occurs due to exceeding the normal stresses in the principal directions, and not due to exceeding the shear strength, this method was modified and adapted to the concrete damage plasticity constitutive model. Instead of reducing the failure surface, the parameters which describe the mechanical behavior in the case of uniaxial compression and uniaxial tension were reduced. In this way, the reduction of stress and the corresponding strain was carried out in the entire range of total strain, without changing the shape of the failure surface in the deviator plane. For the proposed methodology, a numerical algorithm was developed and implemented into the software PAK. The algorithm was verified through test examples and the obtained results were compared with analytically calculated FoS. The excellent agreement is observed between the FoS obtained by applying the proposed algorithm and the analytically calculated FoS.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3