Study on triaxial creep behavior and the damage constitutive model of red sandstone containing a single ice-filled flaw

Author:

Bai Yao1ORCID,Shan Renliang12,Han Tianyu1,Dou Haoyu1,Liu Zhe1

Affiliation:

1. School of Mechanics and Civil Engineering, China University of Mining and Technology (Beijing), Beijing, China

2. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology (Beijing), Beijing, China

Abstract

The freezing method is widely used in the construction of vertical shafts in water-rich strata. The formed frozen rock wall is often involved in the creep process, and in particular, the creep behavior of frozen fissured rock mass poses a great threat to construction safety. To better understand the creep instability law of ice-filled, fractured red sandstone under freezing and triaxial stress conditions, a series of triaxial creep tests on frozen red sandstone specimens containing a single, pre-existing flaw at −10°C and under a confining pressure of 4 MPa were carried out with a self-developed DRTS-500 subzero rock triaxial testing system. The multistage loading creep curves were obtained, and the evolution laws of deformation and damage for the frozen specimens in the primary (instantaneous), secondary (steady-state) and tertiary (accelerating) phases were analyzed. The nonlinear visco-elastoplastic constitutive model of red sandstone with a single ice-filled flaw was established according to the fractional calculus theory and the Kachanov damage theory. The results show that the initial creep property, unstable creep property and creep failure mode of frozen single-flaw red sandstone are significantly affected by the flaw dip angle. The proposed creep damage model can accurately describe the complete creep curves of frozen red sandstone with a single ice-filled flaw, especially in the unstable creep stage. The influences of the stress level and flaw dip angle on the creep parameters were analyzed, and sensitivity analyses of the characteristic creep parameters were carried out to verify the reliability and rationality of our creep model. This research can be applied to the assessment of collapse, cracking and other long-term failures and hence can be used as a theoretical basis of design in the freezing engineering of coal mine shafts.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Computational Mechanics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3