A new damage-based failure criterion for nonlinear behavior of fibrous composite materials

Author:

Abu-Farsakh GA1ORCID,Odeh IN1

Affiliation:

1. Department of Civil Engineering, Faculty of Engineering, Jordan University of Science and Technology, Irbid, Jordan

Abstract

In the present paper, a novel combined damage-based failure criterion is being proposed for predicting failure stresses in unidirectional fibrous composite laminas or laminates having a nonlinear material behavior. The present model incorporates the effect of a quantitative damage factor on the final stresses at failure. This is achieved through a new term called the quantitative directional damage-index (QDD-I) which assesses the contribution and effectiveness of damage in each principal material direction on the present failure criterion. From the QDD-I, it is proved that the principal material-direction with a linear or nonlinear stress-strain behavior showed a quantitative damage response on the proposed failure criterion. In a composite lamina, the contribution of fiber-damage and matrix transverse-damage are proved to have minor effects on the failure criterion, while in-plane shear-damage has the major effect. In order to verify the suitability and applicability of the criterion, results are tested using various theoretical and experimental data available from the literature. Furthermore, the model is compared with other failure criteria under both uniaxial and biaxial loading cases from a worldwide comparison, which showed reasonable accuracy and good agreement. Three types of fibrous composite materials are used; Graphite/Epoxy 4617/Modmore-II, Carbon/Epoxy AS4/3501-6, and Boron/Epoxy Narmco 5505.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3