Continuum damage mechanics of cyclic viscoplasticity using asymptotic numerical method

Author:

Sen Suvadeep1ORCID,Patel Badri Prasad1

Affiliation:

1. Department of Applied Mechanics, Indian Institute of Technology Delhi, New Delhi, India

Abstract

Conscious efforts on reduction of greenhouse gas emissions have led to an energy transition to renewable energy, however uncertainties of renewable energy production have resulted in higher thermal cycling demands from conventional power plants. Thermal load cycling at high temperature regions of steam turbine components leads to enhanced creep-fatigue damage accumulation. It is well established that such damage mechanism is numerically best predicted by unified constitutive modeling including damage as a variable as per the formalism of continuum damage mechanics at an expense of considerable computational efforts using finite element analysis. In this paper, the non-iterative Asymptotic Numerical Method (ANM), currently limited to partial cycle analysis with linear hardening plasticity model, is proposed for the first time to address cyclic viscoplasticity problems including damage capable of handling multiple cycles and most generalized loading conditions. Regularization techniques additionally necessary to implement loading-unloading-reloading criteria and advanced constitutive models etc. are presented. The constitutive model chosen for the formulation includes the non-linear multiple back stress variable modified Chaboche model to include damage combined with modified Chaboche-Rousselier isotropic hardening model to include damage, power law for viscoplasticity, Lemaitre’s damage potential and Kachanov-Rabotnov’s creep damage law. The method is verified with defined error measures and then applied to two high pressure steam turbine rotors, one with and another without thermal stress relief groove (TSRG) at the inlet under service type loading conditions to study the beneficial effect of the TSRG on creep-fatigue damage evolution. The accumulated errors of the proposed ANM and computational time are compared to a conventional Newton-Raphson solution.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3