Energy-based assessment of brittle fracture in VO-notched polymer specimens under combined compression-shear loading conditions

Author:

Majidi HR1,Ayatollahi MR1ORCID,Torabi AR2,Zaheri A1

Affiliation:

1. School of Mechanical Engineering, Fatigue and Fracture Research Laboratory, Center of Excellence in Experimental Solid Mechanics and Dynamics, Iran University of Science and Technology, Tehran, Iran

2. Faculty of New Sciences and Technologies, Fracture Research Laboratory, University of Tehran, Tehran, Iran

Abstract

This research presents some experimental, numerical, and theoretical results on brittle fracture of disk-type test specimens weakened by V-notches with end-holes under mixed mode I/II loading with negative mode I contributions. First, 54 fracture tests are conducted on VO-notched Brazilian disk specimens made of the general-purpose polystyrene under mixed mode I/II loading with negative mode I contributions. Then, two energy-based brittle fracture criteria, namely the averaged strain energy density and averaged strain energy density based on the equivalent factor concept are proposed to predict the experimentally obtained fracture loads of the tested general-purpose polystyrene specimens. Additionally, the fracture initiation angles of the tested VO-notched Brazilian disk specimens are predicted by using averaged strain energy density criterion. The finite element analyses, as well as the experimental observations, show that although brittle fracture in the specimens under mixed mode I/II loading takes place from the applied load side of the notch border by local tensile stresses, the notch bisector line and the other sides of the notch border sustain compressive stresses. In fact, this phenomenon states the concept of mixed mode I/II loading with negative mode I contributions. Finally, it is shown that good agreement exists between the experimental results and the theoretical predictions of the two energy-based fracture criteria.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3