Influence of feedstock type and particle size on efficiency of biochar in improving tensile crack resistance and shear strength in lean clayey soil

Author:

Kumar Himanshu12,Huang Shan3,Mei Guoxiong3ORCID,Garg Ankit1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, Shantou University, Shantou, China

2. Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China

3. College of Civil Engineering and Architecture, Guangxi University, Guangxi, China

Abstract

The development of tensile stress can cause desiccation cracks, further increasing infiltration and inducing instability in green infrastructure (slopes and landfill liners). Recent research has promoted the use of biochar (i.e., stable carbon with a life period of more than 500 years) as an eco-friendly material that can provide simultaneous benefits in reducing tensile stresses and crack development, aiming to enhance landfill cover longevity. However, there is a lack of guidelines and criteria for selecting biochar (feedstock type and particle size) as landfill cover material. This study aims to investigate the effects of biochar particle size and feedstock type on cracking of soil. Two contrasting feedstock types (i.e., pig manure-based and wood-based) have been selected for amendment on lean clay soil. Laboratory experiments were conducted to monitor the cracks. The results show that wood biochar (WB) is more efficient in crack reduction than pig manure biochar (PMB). Moreover, it has been observed that fine-grained biochar is more suspectable to cracks formation regardless of biochar type. The cohesion and internal friction angle of biochar are dependent on the surface morphology of biochar. WB has more angularity and sharp edges, which can increase interlocking in soil, thereby enhancing shear resistance and, hence, soil stability. The comprehensive study can help narrow down the selectivity of biochar and its specifications to mitigate cracks and enhance the strength of landfill cover.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Computational Mechanics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3