Ballistic impact behavior of 2D plain weave fabric targets with multiple layers: Analytical formulation

Author:

Shaktivesh 1,Nair NS1,Naik NK1

Affiliation:

1. Aerospace Engineering Department, Indian Institute of Technology Bombay, Mumbai, India

Abstract

An analytical formulation is presented for the prediction of ballistic impact behavior of fabric targets. The formulation is based on stress wave propagation in porous medium and energy balance between the rigid projectile and the fabric target. During the ballistic impact event, energy lost by the projectile is absorbed by the fabric target through various damage and energy absorbing mechanisms such as compression of the fabric target directly below the projectile, compression in the region surrounding the impacted zone, shear plugging, stretching and tensile failure of yarns/layers in the region consisting of primary yarns, tensile deformation of yarns/layers in the region consisting of secondary yarns, conical deformation on the back face of the fabric target, in-plane friction between the warp and fill yarns and through the thickness friction between the moving projectile and the fabric target. The formulation presented considers both shear plugging and tensile failure of yarns during conical deformation and is valid for a wide range of fabric target thicknesses. Solution procedure for the evaluation of ballistic impact performance is presented. Further, experimental results are presented for the validation of analytical predictions. A good match is observed between the analytical predictions and the experimental results.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3