Backward wave separation method in a single transmitter and multi-receiver sensor array for improved damage identification of two-dimensional structures

Author:

Wang Zijian1,Qiao Pizhong2

Affiliation:

1. Nanjing Hydraulic Research Institute, Nanjing, P.R. China

2. Department of Civil and Environmental Engineering, Washington State University, Pullman, WA, USA

Abstract

In this paper, a backward wave separation method is proposed. Since the first backward wave can be considered as the damage reflection, the damage reflected wave peaks are artificially amplified by appropriately shifting and summing signals collected from a series of sensing points aligned along the wave propagating direction. This shifting and summing process aims to present the damage reflected wave peaks more distinctively while offsets randomly distributed environmental interferences. Due to the high signal-to-noise ratio of the treated signal, the application of backward wave separation is able to attain baseline-free damage detection. A circular single transmitter and multi-receiver sensor array is then deployed on a metal plate to identify the crack-like damage. Signals collected by the sensor array with and without the treatment of the backward wave separation method are, respectively, imported to the delay-and-sum imaging algorithm to yield individual damage contours. The comparisons between these contours demonstrate that the backward wave separation method is able to significantly improve the damage identification performance of the sensor array with respect to the damage localization accuracy, noise immunity, and damage sensitivity. Both the finite element modeling and laser measurement are conducted to validate the effectiveness of the proposed backward wave separation method.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Computational Mechanics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3