Marked crosswalks in US transit-oriented station areas, 2007–2020: A computer vision approach using street view imagery

Author:

Li Meiqing1ORCID,Sheng Hao2,Irvin Jeremy2,Chung Heejung2,Ying Andrew2,Sun Tiger2,Ng Andrew Y2,Rodriguez Daniel A1

Affiliation:

1. University of California, Berkeley, USA

2. Stanford University, USA

Abstract

Improving the built environment to support walking is a popular strategy to increase urban sustainability and walkability. In the past decade alone, many US cities have implemented crosswalk visibility enhancement programs as part of road safety improvements and active transportation plans. However, there are no systematic ways of measuring and monitoring the presence of key built environment attributes that influence the safety and walkability of an area, such as marked crosswalks. Furthermore, little is known about how these attributes change over time at a national scale. In this paper, we introduce an innovative approach using a deep learning-based computer vision model on Street View images to identify changes in intersection-level marked crosswalks around more than 4,000 US transit stations over a 14-year period. We found an increase in the overall number of marked crosswalks at intersections. Furthermore, high-visibility crosswalks became more common, as they replaced existing parallel-line crosswalks. We further examine crosswalks around transit stations in New York City and San Francisco to illustrate geographic variations and compare associations with other characteristics of the built environment as reported in the Smart Location Database. Areas with increases in high-visibility crosswalks focused on high density residential areas and areas with a higher percent of zero-vehicle households. However, geographic variations exist. For example, in San Francisco, transit station areas outside downtown or major corridors (South and Southwest of the city) had the lower prevalence of marked crosswalks. This analysis confirms important gaps in crosswalk visibility that call for safety enhancements and opens the door for additional research involving these data. We conclude by discussing the limitations and future research opportunities using computer vision to automatically detect large-scale transportation infrastructure changes at a relatively low cost.

Funder

National Institute for Congestion Reduction

Publisher

SAGE Publications

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Urban Studies,Geography, Planning and Development,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3