Epoxidized natural rubber composites containing K0.15Cr0.02Ni0.83O nanoparticles: Curing characteristics, dynamic mechanical, mechanical, morphological, and dielectric properties

Author:

Khumpaitool Bualan12,Jantachum Punyarat12,Utara Songkot12ORCID

Affiliation:

1. Division of Chemistry, Faculty of Science, Udon Thani Rajabhat University, Udon Thani, Thailand

2. Functional Materials and Composites Research Group, Faculty of Science, Udon Thani Rajabhat University, Udon Thani, Thailand

Abstract

Many researchers have been trying to improve rubber composites because they are commonly used in a wide range of applications. Incorporation of nano-fillers in a rubber matrix is the most acceptable way to improve the mechanical and electrical properties of rubber composites. A nanometer-sized filler, such as K0.15Cr0.02Ni0.83O (KCNO), has rarely been used to improve the properties of rubber composites. Epoxidized natural rubber (ENR) was chosen for blending with KCNO nanoparticles based on its polarity and chemical resistance. The aim of this work is to investigate the effects of filler loading (0.5, 1.5, and 5 phr) on the curing characteristics, dynamic mechanical, mechanical, morphological, and dielectric properties of rubber composites. From the results, rubber vulcanizates with 1.5 phr of KCNO as filler exhibit better tensile strength and 500% modulus compared to other ENR specimens containing KCNO. ENR containing 1.5 phr of KCNO also has a higher storage modulus (E′) and glass transition temperature (Tg). The results of a microstructural characterization on a sample containing 1.5 phr of KCNO show that the natural rubber matrix and KCNO are effectively dispersed, indicating that the rubber and KCNO are likely well-matched, therefore curing simultaneously and forming a continuous phase. Furthermore, ENR containing 1.5 phr of KCNO has a greater dielectric constant (12.87 at 5 kHz) than other samples.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3