A design of active constrained layer damping treatment for vibration control of circular cylindrical shell structure

Author:

Panda Satyajit1,Kumar Ambesh1

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology Guwahati, India

Abstract

A new 1-3 viscoelastic composite material (VECM) layer is designed for improved active constrained layer damping (ACLD) treatment of vibration of a functionally graded (FG) circular cylindrical shell. Besides this improved active damping treatment, another objective of this study is to control all the modes of vibration of the shell effectively using the treatment (active constrained layer damping) in layer-form throughout the outer shell-surface. In this design of active constrained layer damping treatment in layer-form, its (active constrained layer damping) necessary conformability with the curved host shell-surface is ensured by the use of a vertically reinforced 1-3 piezoelectric composite (PZC) constraining layer, whereas the effective control of several modes of vibration of the shell is achieved by the use of electrode-patches over the surfaces of the constraining layer. A fruitful strategy in the arrangement of electrode-patches is proposed for effective control of several modes of vibration of the shell using one configuration of the electrode-patches. An electric potential function is assumed for this use of electrode-patches and a geometrically nonlinear coupled electro-visco-elastic incremental finite element model of the overall shell is developed for its analysis in the frequency-domain. The analysis reveals significant improvement of active damping characteristics of the active constrained layer damping layer for the use of the present 1-3 viscoelastic composite material layer instead of the traditional monolithic viscoelastic material (VEM) layer. The analysis also reveals the suitability of the present strategy of arrangement of electrode-patches for achieving aforesaid control-activity of the ACLD layer. The effects of temperature in the host functionally graded shell and different geometric parameters in the design of the 1-3 viscoelastic composite material layer on the damping characteristics of overall shell are also presented.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3