Affiliation:
1. School of Civil Engineering and Architecture, Nanchang University, China
Abstract
It is crucial for flood discharge structure vibration safety evaluations to filter low-frequency noise, separate dense-frequency components and obtain high-frequency component accurately from vibration signals. Variational mode decomposition, a novel signal adaptive decomposition method, effectively processes flood discharge structures. However, the mode number and quadratic penalty item uncertainty in variational mode decomposition directly affects the vibration signal decomposition. Therefore, an improved variational mode decomposition method for vibration signal processing is proposed in this study. The proposed method adaptively determines the mode number based on singular entropy and frequency stability to completely separate the structural vibration components (including dense-frequency components and high-frequency components) and noise components from the vibration signal. Next, an objective quadratic penalty item function based on sample entropy and mutual information is proposed to quantify the mode mixing between the structural vibration components. Finally, a particle swarm optimisation algorithm based on beetle antenna search is proposed to optimise the quadratic penalty item, which overcomes the shortcomings of traditional algorithms and suppresses the mode mixing between the structural vibration components. The validity and feasibility of the proposed method was verified by the simulation signal and was applied to a sluice prototype project. The results showed that the method effectively filtered noise, greatly improved the vibration response signal-to-noise ratio and obtained the structural vibration component time history signal, which provides a foundation for flood discharge structure vibration safety evaluation and health monitoring.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangxi, China
State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin
Subject
Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献