Bearing fault diagnosis using deep learning techniques coupled with handcrafted feature extraction: A comparative study

Author:

Alabsi Mohammed1ORCID,Liao Yabin1,Nabulsi Ala-Addin2

Affiliation:

1. Penn State Erie, USA

2. University of Missouri Kansas City, USA

Abstract

Deep learning has seen tremendous growth over the past decade. It has set new performance limits for a wide range of applications, including computer vision, speech recognition, and machinery health monitoring. With the abundance of instrumentation data and the availability of high computational power, deep learning continues to prove itself as an efficient tool for the extraction of micropatterns from machinery big data repositories. This study presents a comparative study for feature extraction capabilities using stacked autoencoders considering the use of expert domain knowledge. Case Western Reserve University bearing dataset was used for the study, and a classifier was trained and tested to extract and visualize features from 12 different failure classes. Based on the raw data preprocessing, four different deep neural network structures were studied. Results indicated that integrating domain knowledge with deep learning techniques improved feature extraction capabilities and reduced the deep neural networks size and computational requirements without the need for exhaustive deep neural networks architecture tuning and modification.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3