A new real-time signal processing approach for frequency-varying machinery

Author:

Zhang Jie1,Gao Hongli1,Liu Qiyue1,Grebe Christopher2

Affiliation:

1. School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, China

2. Department of Electrical and Computer Engineering, University of Windsor, Windsor, ON, Canada

Abstract

Development of condition monitoring approaches has played a key role in the stability and safety of frequency-varying machinery operations. Conventional time–frequency analysis methods suffer problems such as analysis results being too complex to realize highly intelligent and automated condition monitoring systems. Blind source separation is an attractive tool due to its excellent performance in separating defect source signals from their mixtures without detailed knowledge of sources and mixing processes; however, it can only be applied under some strict conditions. In this paper, a nonuniform sampling model is built and a new processing algorithm of frequency-varying signal is proposed. The relationship between the power spectral density (PSD) of the vibration signal of frequency-varying machinery and frequencies at different rotational speeds is derived. The proposed method can adaptively eliminate the influence of the varying rotational speed in the revised PSD. Some classical signal analysis methods are implemented to compare with the proposed approach by simulations. An experiment has been conducted by using a JD-1 wheel/rail simulation facility to illustrate the effectiveness of the proposed method.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3