Phase-based spectrum analysis method for identifying weak harmonics

Author:

Xie Jingsong1ORCID,Cheng Wei1ORCID,Zi Yanyang1ORCID,Zhang Mingquan1

Affiliation:

1. State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, 710049, People’s Republic of China

Abstract

Fault characteristic frequency extraction is an important means for the fault diagnosis of rotating machineries. Traditional signal processing methods commonly use the amplitude information of signals to detect damages. However, when the amplitudes of characteristic frequencies are weak, the recognition effects of traditional methods may be unsatisfactory. Therefore, this paper proposes the phase-based enhanced phase waterfall plot (EPWP) method and frequency equal ratio line (FERL) method for identifying weak harmonics. Taking a cracked rotor as an example, the characteristic frequency detection performances of the EPWP and FERL methods are compared with that of the traditional signal processing methods namely fast Fourier transform, short-time Fourier transform, discrete wavelet transform, continuous wavelet transform, ensemble empirical mode decomposition, and Hilbert–Huang transform. Research results demonstrate that the effects of EPWP and FERL for the recognitions of weak harmonics which are contained in steady signals and transient signals are better than that of the traditional signal processing methods. The accurate identification of weak characteristic frequencies in the vibration signals can provide an important reference for damage detections and improve the diagnostic accuracy.

Funder

National Natural Science Foundation of China

The National Key Research and Development Program of China

Key Project of National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3