Well-posed two-phase nonlocal integral models for free vibration of nanobeams in context with higher-order refined shear deformation theory

Author:

Zhang Pei1ORCID,Qing Hai1ORCID

Affiliation:

1. State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, China

Abstract

In this article, the well-posedness of several common nonlocal models for higher-order refined shear deformation beams is studied. Unlike the case of classic beams models, both strain-driven and stress-driven purely nonlocal theories lead to an ill-posed issue (i.e., there are excessive mandatory boundary conditions) when considering higher-order shear deformation assumption. As an effective remedy, the well-posedness of strain-driven and stress-driven two-phase nonlocal (StrainDTPN and StressDTPN) models is pertinently evidenced by studying the free vibration problem of nanobeams. The governing equations of motion and standard boundary conditions are derived from Hamilton’s principle. The integral constitutive relation is transformed equivalently to a differential form equipped with two constitutive boundary conditions. Using the generalized differential quadrature method (GDQM), the governing equations in terms of displacements are solved numerically. Numerical results show that both the StrainDTPN and StressDTPN models can predict consistent size-effects of beams with different boundary conditions.

Funder

National Natural Science Foundation of China

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3