A dynamic model of a micro-stepped mill with time-dependent boundary conditions

Author:

Huang Bo-Wun1,Tseng Jung-Ge1,Yu Pu-Ping1

Affiliation:

1. Department of Mechanical Engineering, Cheng Shiu University, Kaohsiung, Taiwan

Abstract

The trend toward higher-precision manufacturing technology requires more micro-machining, such as micro-milling. The dynamic characteristics of the micro-milling process must be studied to improve quality, produce a higher production rate, and avoid micro-mill breakage. A dynamic model of a micro-stepped mill with time-dependent cutting-boundary conditions was studied to understand the dynamic characteristic of a micro-mill in the milling process. This work presents the dynamic model and numerical analyses on vibration in micro-milling. An experiment’s result is used to validate the accuracy of the above model. A stepped pre-twisted beam was used to simulate the micro-end mill. The time-dependent boundary and cutting force were used to approximate the milling process. Consequently, a time-dependent vibration model in a micro-milling process is presented. The effects of the rotation speed, cutting depth and boundary stiffness on the dynamic characteristics were considered. Both numerical and experimental analyses indicate that the vibration amplitude was reduced as the micro-mill moved into a work piece.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3