On the adaptive synchronous control of a large-scale dual-shaker platform system

Author:

Li Xinhui1ORCID,Yang Tiejun1,Li Wenke1ORCID,Brennan Michael J2,Zhu Minggang1,Wu Lei1

Affiliation:

1. College of Power and Energy Engineering, Harbin Engineering University, China

2. Department of Mechanical Engineering, UNESP, Brazil

Abstract

There is an ever-increasing requirement for higher power vibrating platforms to test large-scale structures. Whilst this may be achieved with a single shaker, this is an expensive option. An alternative solution is to drive a platform with two or more smaller shakers. To do this effectively, however, requires the identical amplitude and phase response of the shakers. In practice, due to manufacturing tolerances and uneven loading, this is not possible without a control system. The design and implementation of such a system is the objective of this paper. An adaptive FxLMS algorithm is used in the synchronous control of a dual-shaker system, considering the dynamic coupling between the shakers. A simulation is presented to verify the effectiveness of the control algorithm before the control system is integrated with practical a dual-shaker system driving a vibrating platform. It is shown that there are significant differences between the controlled and the uncontrolled system, demonstrating the efficacy of the control approach.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3