Behavior of a Novel Iterative Deconvolution Algorithm for System Identification

Author:

Liu Qunli1,Subhash Ghatu2,Evensen Harold A.3

Affiliation:

1. Department of Mechanical Engineering, University of Nevada Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154, USA

2. Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA,

3. Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA

Abstract

This paper demonstrates the effectiveness and versatility of an iterative deconvolution algorithm in dealing with noise-rendered, truncated signals when signal averaging is not an option. An iterative deconvolution algorithm for system identification and signal restoration is presented, and its effectiveness and robustness are validated through the analysis of several artificially generated signals that are intended to mimic practically measured signals. Its application is intended for use in improving the quality of system identification by reducing the detrimental effect of information leakage caused by windowing. System identification was conducted for various scenarios, in which the input and output signals were rendered with noise and subjected to different truncation levels at the heads and/or tails. The ability of the algorithm to restore the truncated portion of signals is demonstrated. It is concluded that the algorithm has superior performance compared to currently available traditional approaches, such as the fast Fourier transform and autoregressive moving average methods.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3