Vibration reduction using biologically inspired topology optimization method: optimal stiffeners distribution on an acoustically excited plate

Author:

Sabbatini Enrico1,Revel Gian Marco1,Kobayashi Marcelo H2

Affiliation:

1. Università Politecnica delle Marche, Department of Industrial Engineering and Mathematical Sciences, Ancona, Italy

2. University of Hawaii at Manoa, Department of Mechanical Engineering, Honolulu, Hawaii

Abstract

This paper presents the development of a biologically inspired method for topology optimization and its application to a vibration suppression problem. The proposed method is based on modeling the structure topology (distribution of stiffening ribs) by replicating the natural growth of dendritic structures, which are ramified branches as those e.g. in leaves or in insect wings. The test case is a plate excited by acoustic pressure. The multi-objectives topology optimization aims to reduce both the vibration amplitude and mass of the plate. Experimental tests are performed for baseline plate model validation and identification of acoustic excitation distribution. A set of solutions are designed by the proposed method and numerically compared with traditional optimization approaches, showing improved performances. Finally, in order to evaluate industrial applicability, the robustness of the solutions to uncertainty in branch widths is demonstrated.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3