On the mechanical behavior of rubber springs for high speed rail vehicles

Author:

Pintado P.1,Ramiro C.1,Berg M.2,Morales A.L.1,Nieto A.J.1ORCID,Chicharro J.M.1,Miguel de Priego J.C.3,García E.1

Affiliation:

1. Department of Mechanical Engineering, Universidad de Castilla – La Mancha, Avenida Camilo José Cela s/n, 13071, Ciudad Real, Spain

2. Department of Aeronautical and Vehicle Engineering, Kungl Tekniska Högskolan, Stockholm (Sweden)

3. Patentes Talgo, Paseo del Tren Talgo, 2, 28290 Las Matas, Madrid, Spain

Abstract

There are many engineering design problems that call for rubber components as the best solution. Vulcanized rubber has found its way into all sorts of devices, from the universal automobile pneumatic tire to the ubiquitous compliant bushing. Some high-speed rail vehicle suspensions make use of rubber, not only in the air spring itself, but also in the auxiliary spring. The mechanical characteristics of this component influence vehicle dynamics and, therefore, accurate spring models with which to conduct dynamic analysis would make for powerful design tools. Nevertheless, the mechanical behavior of rubber defies simple modeling on account of stress relaxation, creep, set, viscosity, internal friction, and nonlinear stress–strain relations. Despite the advances in the micromechanical understanding of these phenomena, as well as in the macroscopic modeling of rubber spring behavior, there is ample room for refinement, and this is precisely the goal of this paper. The mechanical behavior of a particular rubber spring for high speed rail vehicles has been characterized. The results reveal the necessary components of the model, and suggest the appropriate procedure for parameter extraction. Our model proposal consists of three elements in parallel: a nonlinear elastic spring; a “soft friction” element; and a Maxwell viscous component. The characterization procedure takes into account both stress relaxation and nonlinear elasticity. The proposed model accurately reproduces experimental results and may then be used with confidence in any type of numerical simulation. Nevertheless, for this statement to be true, the problem of “numerical softening” potentially induced by soft friction models should be resolved. The paper will show that a trailing moving average filter, seamlessly tied to the model, wipes out the softening effect.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3