An approach for the impact feature extraction method based on improved modal decomposition and singular value analysis
Author:
Affiliation:
1. School of Mechanical Engineering, Changzhou University, People's Republic of China
2. Department of Mechanical Engineering, The University of Sheffield, UK
Abstract
Funder
Project of Jiangsu Overseas Research & Training Program for University Prominent Young & Middle-aged Teachers and Presidents
National Natural Science Foundation of China
Publisher
SAGE Publications
Subject
Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science
Link
http://journals.sagepub.com/doi/pdf/10.1177/1077546318811410
Reference21 articles.
1. The Huang Hilbert Transform for evaluating the instantaneous frequency evolution of transient signals in non-linear systems
2. Comparison of denoising methods for the early detection of fatigue bearing defects by vibratory analysis
3. Research on fault diagnosis for reciprocating compressor valve using information entropy and SVM method
4. Variational Mode Decomposition
Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Homotypic multi-source mixed signal decomposition based on maximum time-shift kurtosis for drilling pump fault diagnosis;Mechanical Systems and Signal Processing;2024-12
2. Elliptical periodic shock of flexible thin-walled elliptical bearing and its separation using singular value decomposition of adding additional signal;Digital Signal Processing;2024-10
3. Improved lightweight federated learning network for fault feature extraction of reciprocating machinery;Measurement Science and Technology;2024-01-22
4. Homotypic Multi-Source Mixed Signal Decomposition Based on Maximum Time-Shift Kurtosis for Drilling Pump Fault Diagnosis;2024
5. Weighted IMF-based denoising and multi-scale kurtosis weighted K singular value decomposition dictionary learning model for bearing fault diagnosis;Journal of Vibration and Control;2023-10-18
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3