Bicycle disc brake noise analysis and mitigation

Author:

Singh Ajaypal1ORCID,Vreman Hans2,Dressel Andrew E3ORCID,Moore Jason K1ORCID

Affiliation:

1. Department of BioMechanical Engineering, Delft University of Technology, Delft, The Netherlands

2. Royal Dutch Gazelle N.V., Dieren, The Netherlands

3. Department of Civil Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI, USA

Abstract

This project was designed to understand the causes and mechanisms of bicycle disc brake noise and use that information to formulate and evaluate possible mitigation techniques. Brake noise was generated by a real bicycle running on a treadmill and recorded by microphone and laser vibrometer. Six independent variables, brake force, rotor thickness, front fork stiffness, weather conditions, spoke tension, and friction coefficient, were varied according to a one-quarter fractional factorial design. A finite element model of the rotor, pads, and calliper was also formulated and analysed. The results of these two methods, particularly the disc mode shapes and frequencies, suggest that doublet mode splitting and reconverging plays a role in noise generation and that changing the rotor mass or breaking its symmetry could interfere with such noise generation. Finally, of these mitigations, breaking disc symmetry proved the most fruitful, with noise magnitude reductions from 72% to 99%, depending on frequency.

Funder

Royal Dutch Gazelle N.V.

TKI/ClickNL ‘De Fiets van de Toekomst’ grant

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3