Application of scaled boundary finite element method for vibration-based structural health monitoring of breathing cracks

Author:

Sepehry Naserodin1,Ehsani Mohammad23,Zhu Weidong4ORCID,Bakhtiari-Nejad Firooz34ORCID

Affiliation:

1. Faculty of Mechanical and Mechatronics Engineering, Shahrood University of Technology, Iran

2. Dynamics Based Maintenance, Engineering Technology, University of Twente, Netherlands

3. Amirkabir University of Technology, Iran

4. Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore, MD, USA

Abstract

The dynamic response of the host structure to a high-frequency actuation is usually used for the detection of tiny damage in structures in the form of breathing crack. The simulation of the microcrack’s effect on the response is essential for several damage identification targets. The conventional finite element method suffers from very small mesh size requirements to address the high-frequency problems, resulting in very large mass and stiffness matrices. In this study, the scaled boundary finite element method was applied to model different schemes of structural health monitoring of a structure with breathing cracks based on high-frequency vibration. The scaled boundary finite element method discretizes only the boundary of the model and thus substantially reduces the size of structural matrices. The node-to-node contact strategy was introduced to the scaled boundary finite element method to capture the contact problem that occurs during the vibration of the breathing crack. As breathing crack vibration results in some nonlinear effects, the simulation of three phenomena was of interest: higher harmonic generation, frequency shift, and vibro-acoustic modulation. A shooting method was used for efficient time integration and description of the frequency response function in the nonlinear regime. According to the results, the scaled boundary finite element method is of great power, efficiency, and accuracy to treat the contact problems, especially in high-frequency regimes. Moreover, the nonlinear methods provide certain advantages over the linear techniques in the early detection of incipient damage.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3