Affiliation:
1. School of Mechanical Engineering and Automation, Northeastern University, Shenyang, PR China
Abstract
A model is introduced for analyzing the influence of tooth shape deviations and assembly errors on the helical gear mesh stiffness, loaded transmission error, tooth contact stress and tooth root stress. The helical gear is approximated as a series of independent spur gear slices along axial direction whose face-width is relatively small. The relative position relationships among those sliced teeth in mesh are developed with tooth profile errors and the stiffness of the sliced tooth is calculated by the potential energy method. From the equilibriums of the forces, gear mesh stiffness, loaded transmission error, tooth contact stress and tooth root stress are calculated. Then two cases are presented for validation of the model. It is demonstrated that the model is effective for calculating the stiffness of helical gear pairs. Finally, the effects of the tooth tip reliefs, lead crown reliefs and misalignments on the gear mesh stiffness, transmission error, tooth contact stress and tooth root stress are analyzed. The results show that mesh stiffness decreases, loaded transmission error, the maximum tooth contact stress and the maximum tooth root stress grow with the increasing tooth tip relief, lead crown relief and misalignment. And tooth edge has concentrated tooth contact stresses with a gear misalignment.
Subject
Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science
Cited by
96 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献