Identification of elastic edge condition for modeling vibration response of glass touch panel

Author:

Kaito Yoshihiko1,Honda Shinya2,Narita Yoshihiro2

Affiliation:

1. Platform Development Div., Development Unit, Fujitsu Connected Technologies Limited, 4-1-1, Kamiodanaka, Nakahara-ku, Kawasaki, Kanagawa, 211-8570, Japan

2. Division of Human Mechanical Systems and Design, Faculty of Engineering, Hokkaido University, N13W8, Sapporo, Hokkaido, 060-8628, Japan

Abstract

This paper deals with the vibration modeling of a glass panel, with emphasis on smartphone applications, and attempts to identify the elastic boundary condition to support the glass panel. This study is motivated to develop a more-efficient vibration function of the glass panel in smartphones. First, based on the classical plate theory, the vibration behavior is analyzed with consideration of the elastic translational and rotational springs distributed along the panel edge. The accuracy of applying the energy method (Ritz method) is verified by comparing the analytical results with the experimental results by a modal analysis technique, and it is shown that the plate theory used for crystalline materials (i.e. metals and plastics) is applicable also to the glass (non-crystalline) plates. Second, the elastic constants of such distributed springs are identified by a combination of the genetic algorithm and the present Ritz method, and the design approach is summarized for developing more effective use of the vibrating function on glass panels in the smartphones and other tablet terminals.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3