Affiliation:
1. Department of Engineering Mechanics, MIIT Key Laboratory of Dynamics and Control of Complex Systems, Northwestern Polytechnical University, P.R. China
Abstract
An optimal bounded control strategy for strongly nonlinear vibro-impact systems under stochastic excitations with actuator saturation is proposed. First, the impact effect is incorporated in an equivalent equation by using a nonsmooth transformation. Under the assumption of light damping and weak random perturbation, the system energy is a slowly varying process. By using the stochastic averaging of envelope for strongly nonlinear systems, the partially averaged Itô stochastic differential equation for system energy can be derived. The optimal control problem is transformed from the original optimal control problem for the state variables to an equivalent optimal control problem for the system energy, which decreases the dimensions of the optimal control problem. Then, based on stochastic maximum principle, an adjoint equation for the adjoint variable and the maximum condition of partially averaged control problem are established. For infinite time-interval ergodic control, the adjoint variable is assumed to be a stationary process and the adjoint equation can be further simplified. Finally, the probability density function of the system energy and other statistics of the optimally controlled system are derived by calculating the associated Fokker–Plank–Kolmogorov equation. For comparison, the bang–bang control is also investigated and the control results are compared to show the advantages of the developed control strategy.
Funder
National Nature Science Foundation of China
Natural Science Basic Research Plan in Shaanxi Province of China
Subject
Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献