Affiliation:
1. Mechanical Systems Engineering, Tokyo City University, Setagaya-ku, Japan
2. Chiba Institute of Technology, Chiba, Japan
Abstract
Large-capacity hard disk drives are important for the development of an information society. The capacities of hard disk drives depend on the positioning accuracy of magnetic heads, which read and write digital data, in disk-positioning control systems. Therefore, it is necessary to improve positioning accuracy to develop hard disk drives with large capacities. Hard disk drives employ dual-stage actuator systems to accurately control the magnetic heads. A dual-stage actuator system consists of a voice coil motor and micro-actuator. In micro-actuators, there is a trade-off between head-positioning accuracy and stroke limitation. In particular, in a conventional controller design, the micro-actuator is required to actuate such that it compensates for low-frequency vibration. To overcome this trade-off, this study proposes a high-bandwidth controller design for the micro-actuator in a dual-stage actuator system. The proposed method can reduce the required stroke of the micro-actuator by increasing the gain of the feedback controller of the voice coil motor at low frequencies. Although the voice coil motor control loop becomes unstable, the micro-actuator stabilizes the entire feedback loop at high frequencies. As a result, the control system improves the positioning accuracy compared to that achieved by conventional control methods, and the required micro-actuator stroke is reduced.
Funder
Japan Society for the Promotion of Science
Subject
Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献