Various gradient elasticity theories in predicting vibrational response of single-walled carbon nanotubes with arbitrary boundary conditions

Author:

Ansari R1,Gholami R1,Rouhi H1

Affiliation:

1. Department of Mechanical Engineering, University of Guilan, Iran

Abstract

This article deals with the development and use of different gradient beam theories in order to predict the vibrational behavior of single-walled carbon nanotubes (SWCNTs). To address the problem of free vibration, the Euler–Bernoulli and Timoshenko beam theories in conjunction with the gradient elasticity theories including stress, strain and combined strain/inertia are implemented. The generalized differential quadrature method is employed to numerically solve the problem which can treat various boundary conditions. The results generated from the present gradient models are compared with those from molecular dynamics simulations as a benchmark of good accuracy and the proper values of small length scales used in the gradient models are proposed. This study shows prominent differences between various gradient models when the nanotube becomes very short (for aspect ratios of approximately lower than six). It is indicated that applying the strain gradient elasticity by incorporation of inertia gradients yields more reliable results especially for shorter length SWCNTs on account of two small-scale factors related to the inertia and strain gradients. Moreover, since with the reduction in the aspect ratio of nanotubes the effects of boundary conditions become dominant, a discussion is given to investigate the influence of end conditions on the vibrational characteristics of SWCNTs.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3