Optimization of an engine mounting system with consideration of frequency-dependent stiffness and loss factor

Author:

Ooi Lu-Ean1,Ripin Zaidi Mohd1

Affiliation:

1. School of Mechanical Engineering, Universiti Sains Malaysia, Pulau Pinang, Malaysia

Abstract

An engine mounting system is the primary vibration isolator of the engine from the chassis. The frequency-dependent stiffness and loss factor present a more accurate representation of a rubber mount as opposed to the frequency-independent damping model. In this article, dynamic optimization of an engine mounting system considering the frequency-dependent stiffness and loss factor is presented. The dynamic properties in all three principal directions are measured on the basis of the optimum locations and orientation angles of the individual engine mounts, which are identified to minimize the mean force transmissibility of the system for a range of frequencies, resulting in a 45% reduction in the vertical transmissibility to the installation base. In comparison, optimization based on a frequency-independent stiffness underestimated the peak transmissibility, and minimization of the vertical force transmissibility created a significant increase in other directions. The optimum parameters are applied to a small utility two-stroke engine. A significant reduction in the transmitted force and engine displacement is demonstrated.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3