Affiliation:
1. School of Marine Electrical Engineering, Dalian Maritime University, China
Abstract
This article considers the problem of adaptive neural network control via command filtering for incommensurate fractional-order chaotic permanent magnet synchronous motors with full-state constraints and parameter uncertainties. First, a neural network state observer based on a K-filter is established to reconstruct unmeasured feedback information. Then, the command filtered technology is used to overcome the inherent “explosion of complexity” problem under fractional-order framework. Furthermore, to eliminate the errors generated by filters, an error compensation system is used. Meanwhile, the nonlinear unknown functions are approximated by using neural networks. In addition, the barrier Lyapunov functions are designed to avoid the violation of the state constraints. Finally, the availability of the proposed control algorithm is revealed by numerical simulations.
Funder
National Natural Science Foundation of China
Subject
Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献