Barrier Lyapunov function–based adaptive neural network control for incommensurate fractional-order chaotic permanent magnet synchronous motors with full-state constraints via command filtering

Author:

Lu Senkui1ORCID,Wang Xingcheng1ORCID

Affiliation:

1. School of Marine Electrical Engineering, Dalian Maritime University, China

Abstract

This article considers the problem of adaptive neural network control via command filtering for incommensurate fractional-order chaotic permanent magnet synchronous motors with full-state constraints and parameter uncertainties. First, a neural network state observer based on a K-filter is established to reconstruct unmeasured feedback information. Then, the command filtered technology is used to overcome the inherent “explosion of complexity” problem under fractional-order framework. Furthermore, to eliminate the errors generated by filters, an error compensation system is used. Meanwhile, the nonlinear unknown functions are approximated by using neural networks. In addition, the barrier Lyapunov functions are designed to avoid the violation of the state constraints. Finally, the availability of the proposed control algorithm is revealed by numerical simulations.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3