Parametric resonances for torsional vibration of excited rotating machineries with nonconstant velocity joints

Author:

SoltanRezaee Masoud1,Ghazavi Mohammad-Reza1,Najafi Asghar2

Affiliation:

1. Department of Mechanical Engineering, Tarbiat Modares University, Iran

2. Mechanical Rotary Equipment Department, Niroo Research Institute, Iran

Abstract

The shaft system is a rotating machinery with many applications due to its high speed. The angle between shafts may not be zero. So the shafts can be connected to each other through a nonconstant velocity U-joint, which transforms a constant input angular velocity into a periodically fluctuating velocity. Consequently, the mechanism is parametrically excited and may face resonance conditions. Herein, a power transmission system including three elastic shafts is considered. The polar inertia moment of each shaft is modeled as a dynamic system with two discrete disks at the shaft ends. The equations of motion consist of a set of Mathieu–Hill differential equations with periodic coefficients. The dynamic stability and torsional vibration of the shaft system are analyzed. The system geometry and inertia moment effect are the main issues in this contribution. Parametric instability charts are achieved via the monodromy matrix technique. The graphical numerical results are validated with the frequency analytical results. Finally, the stability regions are shown in the parameter spaces of velocity, misalignment angles and the inertia of disks. The results demonstrated that by changing the system inertia and geometry, stabilizing the whole system is possible. Moreover, to check the precision of the model, the results are compared with a basic single-disk model, which is prevalent in two-shaft systems.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3