On the analytical and experimental assessment of the performance of a quasi-zero-stiffness isolator

Author:

Xu Daolin1,Zhang Yueying1,Zhou Jiaxi1,Lou Jingjun2

Affiliation:

1. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, China

2. Office of Research and Development, Naval University of Engineering, Wuhan, China

Abstract

This paper presents a study of a quasi-zero-stiffness (QZS) isolator. A unique relationship between the geometry configuration and the stiffness of the spring elements is obtained in order to design the property of high-static-low-dynamic stiffness. Analytical solutions of the nonlinear QZS system are derived with the harmonic balance method for the characteristic analysis of the force transmissibility and critical conditions for occurring jump-down and jump-up phenomena. The effects of damping and excitation force on the system behaviors are discussed. A series of experimental tests demonstrate that the QZS system greatly outperforms a corresponding linear isolation system. The former enables vibration to be attenuated at 0.5 Hz, while the latter can only execute attenuation after 4.2 Hz. The QZS system is especially effective for vibration isolation in the low-frequency range.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3